Stabilization of magnetic skyrmions in tight nanowires

  • Yamaguchi, A. et al. Real-space observation of current-induced domain wall motion in submicron magnetic wires. Phys. Rev. Lett. 92077205 (2004).

    ADS
    CASE
    PubMed
    Article

    Google Scholar

  • Allwood, DA et al. Magnetic domain wall logic. Science 3091688 (2005).

    ADS
    CASE
    PubMed
    Article

    Google Scholar

  • Kläui, M., Ehrke, H. & Rüdiger, U. Direct observation of domain wall pinning at nanoscale constrictions. Appl. Phys. Lett. 87102509 (2005).

    ADS
    Article
    CASE

    Google Scholar

  • Beach, GSD, Nistor, C., Knutson, C., Tsoi, M. & Erskine, JL Dynamics of field-driven domain wall propagation in ferromagnetic nanowires. Nature Mater. 4741 (2005).

    ADS
    CASE
    Article

    Google Scholar

  • Parkin, SSP, Hayashi, M. & Thomas, L. Magnetic domain-walled running track memory. Science 320190 (2008).

    ADS
    CASE
    PubMed
    Article

    Google Scholar

  • O’Brien, L. et al. Bidirectional magnetic nanowire shift register. Appl. Phys. Lett. 95232502 (2009).

    ADS
    Article
    CASE

    Google Scholar

  • Lahtinen, THE, Franke, KJA & van Dijken, S. Electric field control of magnetic domain wall motion and local magnetization inversion. Science. representing 2258 (2012).

    PubMed
    PubMed Center
    Article
    CASE

    Google Scholar

  • Tanigawa, H. et al. Thickness dependence of current-induced domain wall motion in a Co/Ni multilayer with out-of-plane anisotropy. Appl. Phys. Lett. 102152410 (2013).

    ADS
    Article
    CASE

    Google Scholar

  • Sbiaa, R. & Piramanayagam, SN Multilevel domain wall memory in tight magnetic nanowires. Appl. Phys. A 1141347 (2014).

    ADS
    CASE
    Article

    Google Scholar

  • Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnology. 11231-241 (2016).

    ADS
    CASE
    PubMed
    Article

    Google Scholar

  • Kim, K.-J. et al. Fast domain wall motion near the angular momentum compensation temperature of ferrimagnetics. Nat. Mater. 161187 (2017).

    ADS
    CASE
    PubMed
    Article

    Google Scholar

  • Al Bahri, M. et al. Staggered magnetic nanowire devices for efficient domain wall pinning in racetrack memory. Phys. Rev. Appl. 11024023 (2019).

    ADS
    CASE
    Article

    Google Scholar

  • Kim, YU, Kwon, J., Hwang, HK, Purnama, I. & You, CY Abnormal multi-level Hall resistance in a single Hall cross for neuromorphic device applications. Science. representing ten1285 (2020).

    ADS
    CASE
    PubMed
    PubMed Center
    Article

    Google Scholar

  • Muhlbauer, S. et al. Skyrmion Lattice in a chiral magnet. Science 323915 (2009).

    ADS
    PubMed
    Article
    CASE

    Google Scholar

  • Rößler, UK, Bogdanov, AN & Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 442797 (2006).

    ADS
    PubMed
    Article
    CASE

    Google Scholar

  • Jonietz, F. et al. Spin transfer couples in MnSi at ultra-low current densities. Science 3301648–1651 (2010).

    ADS
    CASE
    PubMed
    Article

    Google Scholar

  • Romming, N. et al. Writing and deleting unique magnetic skyrmions. Science 341636–639 (2013).

    ADS
    CASE
    PubMed
    Article

    Google Scholar

  • Sampaio, J., Cros, V., Rohart, S., Thiaville, A. & Fert, A. Nucleation, stability, and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotechnology. 8839 (2013).

    ADS
    CASE
    PubMed
    Article

    Google Scholar

  • Wooo, S. et al. Observation of magnetic skyrmions at room temperature and their current-induced dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15501-506 (2016).

    ADS
    CASE
    PubMed
    Article

    Google Scholar

  • Ding, J., Yang, X. & Zhu, T. Manipulation of the current-induced motion of magnetic skyrmions in the magnetic nanotrack. J.Phys. D 48115004 (2015).

    ADS
    CASE
    Article

    Google Scholar

  • Fert, A., Reyren, N. & Cros, V. Magnetic Skyrmions: Advances in Physics and Potential Applications. Nat. Rev. Mater. 217031 (2017).

    ADS
    CASE
    Article

    Google Scholar

  • Prychinenko, D. et al. Magnetic skyrmion as a nonlinear resistive element: a potential building block for reservoir computing. Phys. Rev. Appl. 9014034 (2018).

    ADS
    CASE
    Article

    Google Scholar

  • Zazvorka, J. et al. Skyrmion thermal diffusion used in a redistribution device. Nat. Nanotechnology. 14658 (2019).

    ADS
    PubMed
    Article
    CASE

    Google Scholar

  • Casiragui, A. et al. Individual manipulation of skyrmions by local magnetic field gradients. Common. Phys. 2145 (2019).

    Article

    Google Scholar

  • Yokouchi, T. et al. Creation of magnetic skyrmions by surface acoustic waves. Nat. Nanotechnology. 15361 (2020).

    ADS
    CASE
    PubMed
    Article

    Google Scholar

  • Sbiaa, R. Multi-state magnetic domain wall devices for neuromorphic computing. Phys. Solidi-RRL Statistics 152100125 (2021).

    CASE
    Article

    Google Scholar

  • Wang, X. et al. Manipulation of the density of magnetic skyrmions by multilayer repetition and thermal annealing. Phys. Rev. B 104064421 (2021).

    ADS
    CASE
    Article

    Google Scholar

  • Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Round. 12091–98 (1960).

    ADS
    CASE
    Article

    Google Scholar

  • Dzyaloshinskii, IE Theory of helical structures in antiferromagnets. Sov. Phys. JETP 19960–971 (1964).

    Google Scholar

  • Sues, D. et al. Spinning torque efficiency and analytical error rate estimates from skyrmion’s racing memory. Science. representing 94827 (2019).

    ADS
    PubMed
    PubMed Center
    Article
    CASE

    Google Scholar

  • Vansteenkiste, A. et al. The design and verification of MuMax3. AIP Adv. 4107133 (2014).

    ADS
    Article
    CASE

    Google Scholar

  • Chui, CP, Ma, F. & Zhou, Y. Geometric and physical conditions for skyrmion stability in a nanowire. AIP Adv. 5047141 (2015).

    ADS
    Article

    Google Scholar

  • Deger, C., Yavuz, I. & Yildiz, F. Coherent current-driven skyrmion generation. Science. representing 93513 (2019).

    ADS
    CASE
    PubMed
    PubMed Center
    Article

    Google Scholar

  • Chen, R., Li, Y., Pavlidis, VF & Moutafis, C. Skyrmionic Interconnect Device. Phys. Rev. Res. 2043312 (2020).

    CASE
    Article

    Google Scholar

  • Sbia, R. et al. Ferromagnetic resonance measurements of multilayers (Co/Ni/Co/Pt) with perpendicular magnetic anisotropy. J.Phys. D 49425002 (2016).

    Article
    CASE

    Google Scholar

  • Thiaville, A., Nakatani, Y., Miltat, J., and Suzuki, Y. Micromagnetic understanding of current-induced domain wall motion in patterned nanowires. Europhys. Lett. 69990 (2005).

    ADS
    CASE
    Article

    Google Scholar

  • Kandukuri, S., Murthy, VSN, and Thiruvikraman, PK Creation of isolated skyrmion lattices, skyrmion lattices and antiskyrmions by magnetization inversion in the Co/Pd nanostructure. Science. representing 1118945 (2021).

    ADS
    CASE
    PubMed
    PubMed Center
    Article

    Google Scholar

  • Masell, J. & Karin, Everschor-Sitte K. Current-induced dynamics of chiral magnetic structures: creation, movement and applications. In Chirality, Magnetism and Magnetoelectricity. Topics in Applied Physics Flight. 138 (ed. Kamenetskii, E.) (Springer, 2021).

    Google Scholar

  • Zhang, X., Xia, J., Zhao, GP, Liu, X. & Zhou, Y. Magnetic skyrmion transport in a nanotrack with spatially variable damping and non-adiabatic torque. IEEE Trans. Mag. 531–6 (2016).

    ADS

    Google Scholar

  • Morshed, MG, Vakili, H. & Ghosh, AW Positional stability of Skyrmions in racetrack memory with notched geometry. arXiv preprint arXiv:2110.13445.

  • Wang, Z. et al. Generation and Hall effect of activated skyrmions using non-magnetic point contacts. Phys. Rev. B 100184426 (2019).

    ADS
    CASE
    Article

    Google Scholar

  • Sbiaa, R. & Al Bahri, M. Tight nanowire with stabilized magnetic domain wall. J. Magn. Mag. Carpet. 411113 (2016).

    ADS
    CASE
    Article

    Google Scholar

  • Rohart, S. & Thiaville, A. Confinement of Skyrmion in ultra-thin film nanostructures in the presence of the Dzyaloshinskii-Moriya interaction. Phys. Rev. B 88184422 (2013).

    ADS
    Article
    CASE

    Google Scholar

  • Wang, XS, Yuan, HY & Wang, XR A theory on the size of skyrmions. Common. Phys. 131 (2018).

    Article

    Google Scholar

  • Zhang, X. et al. Fully magnetic control of skyrmions in nanowires by a spin wave. Nanotechnology 26225701 (2015).

    ADS
    PubMed
    Article

    Google Scholar

  • Comments are closed.